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Supervisory control theory, which was first proposed by Ramadge and Wonahm, is a well-suited control theory for
the control of complex systems such as semiconductor manufacturing systems, automobile manufacturing systems,
and chemical processes because these are better modelled by discrete event models than by differential or difference
equation models at higher levels of abstraction. Moreover, decentralised supervisory control is an efficient method
for large complex systems according to the divide-and-conquer principle. This article presents a solution and a
design procedure of supervisory control problem for the case of decentralised control. We apply the proposed design
procedure to an experimental miniature computer-integrated manufacturing (CIM) system. This article presents the
design of fourteen modular supervisors and one high-level supervisor to control the experimental miniature CIM
system. These supervisors are controllable, non-blocking, and non-conflicting. After the verification of the
supervisors by simulation, the collision avoidance supervisors for automated guided vehicle system have been

implemented to demonstrate their efficacy.
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1. Introduction

As any manufacturing system becomes larger and
more complex, more systematic and rigorous methods
are needed for the modelling and control of such large
complex systems. Supervisory control theory (Ra-
madge and Wonham 1987, Wonham and Ramagde
1987), which was proposed by Ramadge and Wonham
and based on discrete event system (DES) methods, is
recognised as one of the promising techniques for the
design and control of large complex systems, such as
semiconductor manufacturing systems, chemical pro-
cesses, HVAC (heating, ventilation and air condition-
ing), and power plants. Recently, the supervisory
control theory has received much focus in many
applications, such as robotics (Ricker et al. 1996,
Chung and Lee 2005), traffic control (Giua and Seatzu
2001), logistics (Jafari et al. 2002), failure diagnosis
(Son and Lee 2007) and manufacturing systems
(Golmakani et al. 2006), because it can satisfy control
specifications of a plant to be controlled systemically
by permitting eligible events in the plant maximally.
Also, it has been proved that the supervisory control
theory is very efficient for the control of highly
complex systems (Cassandra and Lafortune 1989,
Ramadge and Wonham 1989), which are modelled as
Petri nets (Basile et al. 2004, Dai et al. 2009) or

automata (Lee and Lee 2002, Ramirez-Serrano and
Benhabib 2003).

A general problem in the design and control of
target systems based on the supervisory control theory
(Wonham 1998) is named as supervisory control
problem (SCP). The SCP is, generally, used to find a
supervisory controller, i.e. centralised supervisor,
which satisfies the legal language (behaviour specifica-
tion) of a system (Wonham 1998). However, as the
system becomes larger and more complex, the compu-
tational complexity of the SCP increases exponentially
due to the increase of eligible events. The divide-and-
conquer principle is very useful to solve this problem
because the computational complexity can be de-
creased exponentially if the SCP is solved by dividing
the system into several sub-systems (Rudie and
Wonham 1992). Based on this approach, supervisory
controllers designed are called as modular supervisory
controllers horizontally (Wonham and Ramadge 1988)
and high-level supervisory controllers hierarchically
(Leduc et al. 2006). Finally, a decentralised supervisory
control system is defined as a supervisory control
system, which consists of the modular supervisors and
the high-level supervisors (Yoo and Lafortune 2002).

A hierarchical supervisory control is presented by
Tittus and Lennartson (2002) as a Petri net-based
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approach, and by Leduc er al. (2005, 2009) as an
automata-based approach. Theoretically, they proved
that a proposed hierarchical supervisor is by far less
complex than a non-hierarchical one. Yoo and
Lafortune (2002) presented a generalised form of the
conventional decentralised control architecture for
DESs. They proposed a concept of fusion operation
using both the union and the intersection of enabled
events. Their method is extended to allow the making
of conditional decisions also, ‘enable if nobody
disables’ and ‘disable if nobody enables’, in addition
to unconditional decisions, ‘enable’ and ‘disable’ (Yoo
and Lafortune 2004). They, however, did not present a
design procedure with a practical example for the easy
use of the presented theory even though their method
was rigorous. Feng et al. (2009) proposed a similar
method for a decentralised non-blocking supervisory
control. They briefly outlined the proposed theory with
a practical example. The other approach, the so-called
supervisor localisation, is proposed by Cai and
Wonham (2010) for the distributed control architec-
ture of large scale DESs. They analysed trade-offs
between the decentralised and the distributed control
architecture. A practical implementation method is not
presented by Feng et al. (2009) and Cai and Wonham
(2010).

Queiroz and Cury (2002) presented an implementa-
tion method of modular supervisory controller using a
programmable logic controller (PLC). They explained
their method with a simple manufacturing cell
example. They, however, showed only simulation
results using the proposed method. Supervisor im-
plementation using the PLC 1is also presented by
Ramirez-Serrano et al. (2002) and by Petin et al.
(2007).

Petri net is, usually, more efficient as a modelling
and analysis method for the deadlock avoidance
(Lerrarini et al. 1999) and performance evaluation
(Tsinarakis et al. 2005) of a manufacturing system. We,
therefore, use automata to model the manufacturing
system for the supervisory control in this article.

In this article, a concept of sub-plant is proposed to
reduce the computational complexity for controllabil-
ity in the SCP, and then, a generalised solution of the
SCP for the modular supervisors is also proposed. A
solution of the SCP for a high-level plant with respect
to a high-level behaviour specification is also devel-
oped using the proposed concept of the sub-plant and
Wonham et al.’s method. The developed solutions are
proved theoretically.

Modular and high-level supervisors are designed,
implemented and verified using an experimental
miniature computer-integrated manufacturing (CIM)
system using the proposed decentralised supervisory
control scheme. The experimental miniature CIM

system consists of three industrial robots, two auto-
mated guided vehicles (AGVs), two numerical con-
trolled (NC) machines, several conveyor belts and
sensors. A plant of the miniature CIM system is
modelled as the deterministic automaton. The opera-
tion rules of the miniature CIM system are defined as
the behaviour specifications (legal languages), and the
supervisors are then designed with respect to these
specifications. The designed supervisors are later
transformed into the clocked Moore synchronous state
machine (CMSSM; Wakerley 1990) for the implemen-
tation. We, finally, verify a supervisor for a collision
avoidance of AGVs via an experiment, which is a
critical problem for the material transfer in production
lines (Singh et al. 2010).

This article is organised into six sections. In the
section following this introduction, a background of
the supervisory control theory is presented. In the third
section, the design methodologies of the decentralised
supervisory control and its theoretical proofs are
presented. An application to the experimental minia-
ture CIM system of the proposed control and an
implementation of the designed controller are pre-
sented in the fourth and fifth sections, respectively.
Finally, the main contributions of this article are
summarised in the last section.

2. Background
2.1. System modelling

DES is modelled as the automaton G = {Q, X, 0, ¢o,
0,.}, where Q is the state set, X is the event set, J:
0 x X'—Q is the state transition function, g, is the
initial state and Q,, is the marked state set, which is
a subset of Q. In &, =" is the set of null event, and
string (sequence) is expressed as ¢ and o g5 03.. .0,
k > 1, respectively. In particular, the event set X is
divided into two disjoint sets, i.e. the controllable
event set X. and the uncontrollable event set X,..
And X is also partitioned into the observable event
set X, and the unobservable event set X,,. The
language that is generated by G is defined as shown
in Equation (1)

L(G) = {s|s € 27, 0(qo0, 5)'} (1)
where d(qo, 5)! means that a next state is defined after

the occurrence of the string s in the state go. The prefix
closure of L(G) is defined as

L(G) = {t € *|t < s for somes € L(G)}  (2)

And the marked language of G is defined as follows.

Li(G) = {s]0(q0,5)! € Om, Ln(G) € K(G)}  (3)
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If G satisfies L,(G) = L(G), then L(G) is non-
blocking. The non-blockingness is then the necessary
condition to design a proper supervisor in the super-
visory control theory. And if the prefix closures of two
languages are disjoint, then these languages are non-
conflicting as defined in Equation (4).

L(G) = L(G1) U L(Gy),

null = L(G,) N L(G,) (4)
= L(Gl) N (G2)

Finally, the projection map P is defined as P(c) = ¢
and P(so) = P(s) for g € Z,,, s € L(G).

2.2.  Supervisory control

Supervisor is also defined as the automaton S = {X, X,
&, xo, X)), where X, Z, & X % X, Xo and X, are
the state set, the event set, the state transition
function, the initial state and the marked state,
respectively. Let the plant to be controlled be defined
as G, then the behaviour of plant G under the
supervision of S is represented as Equation (5).

S/G = {X X Q,Z,f X 5a (x07q0)aXm X Qm} (5)

The controllability and the observability of L(S) with
respect to L(G) are defined in Definitions 1 and 2,
respectively.

Definition 1: For S C G, S'is controllable with respect to
(G, Z,.) if the following is satisfied.

(Vs,o)s € L(S),0 € X\, 50 € L(G) = sa € L(S) (6)

The physical meaning of controllability is that an
arbitrary string s, which is permissible by the super-
visor S and an uncontrollable event g, is eligible in the
plant G, if the string so is eligible in G and if S also
permits sa, then, S is controllable with respect to G.

Definition 2: For S C G, S is observable with respect to
(G, P, X£,,) if the following is satisfied.

Vs,s',a € L(S), P(s) = P(s),0 € 2,50 € L(S), )
s'o € L(G) = s'a € L(S)

Observability means that if so is permissible by S
and 5o is eligible in G, then S also have to permit s'c,
where two strings s and s" are recognised as the same
string by the projection map P and are also permissible
by the supervisor S and where ¢ is an unobservable
event.

SCP is defined in Definition 3 based on Definition 1.
Definition 3: For a given K and G, where K C G, find a
supremal language S that satisfies L(S/G) = K and
L(S/G) = L,,(S/G) and is controllable with respect to
(G, Zye).

If K is, therefore, defined as the legal language for
the plant G to be controlled, then the SCP is to find a
supervisor, which satisfies L(S/G) = K and is non-
blocking and controllable with respect to G. In
addition, the supervisor, which satisfies the constraints
and is controllable, need not be unique. Among these
supervisors, a supremal controllable sub-language of G
with respect to K is the unique solution of the SCP.
Therefore, the supervisor S, which satisfies Definition
3, can permit the language to occur in the plant G
maximally. A supervisory control system is illustrated
in Figure 1.

3. Decentralised supervisory control
3.1. Design of modular supervisor

Let us consider two fundamental issues in this section,
the computational complexity and the implementation
simplicity. First, a method to reduce the computational
complexity is presented. Solving the SCP with respect
to all the plants takes a tremendous computational
complexity. Therefore, the computational complexity
can be decreased exponentially if the SCP is solved
with respect to several sub-plants. This approach is
presented in Theorem 1.

Theorem I: For a given plant G, which can be expressed
asG = G; x Gy, x ... X G, let us define a sub-plant
Gyw.i € Gfor the legal language K;, i = 1, ..., m. If S;is
a solution of the SCP with respect to (K;, G,;,) and is
non-conflicting with the G, , @7 j, then S; is the
solution of the SCP with respect to (K;, G).

Proof: Based on the SCP, we have to prove that S; is
controllable with respect to (K;, G), is non-blocking
and is the maximally permissible language. First, let us
consider the controllability of S;. If the event sets of G
and Gy, ; are defined as X and X, ;, respectively, then
the new event set » ., =X — Z,;; can be defined.
Here, every uncontrollable event, which is an element
of (X5, )ue € 25 1s permitted by S; because X%, ; is

uc = “sub,i’ sub,i

b Plant
G

Disable All Events
Command

Supervisor «
S

Figure 1. Concept of supervisory control system.
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the event set consisting of self-loops in S;. Therefore, S;
is controllable with respect to G. And S;is non-blocking
because it is non-conflicting with respect to Gy, j» I 7 J.
Finally, K; is the maximally permissible language
because every event in 27, ; is permitted by S..

Next, let us consider finding an equivalent super-
visor, which is less complex to implement because it
has less states and less state transitions even if it
generates same language with the original solution of
the SCP. Generally, the supervisor S satisfies the
following:

L(S/G) = L(S) (8)

However, the supervisor S becomes much com-
plex because it has much more states than those in
the legal language K with respect to the events
generated in the plant G. Practically, this complexity
creates a problem in the implementation of the
supervisor. Therefore, it will be relatively easier to
implement the simpler supervisor ', which satisfies
Equation (9).

L(S'/G) = L(S) ©)

This means that the supervisor S’, which is simpler
than S, can be designed by satisfying Equation (9)
while the language of plant behaviour under the
supervision of S’ is same with the one under the
supervision of S. If the legal language K is defined,
then the maximum number of state in S’ is the same
with that of K while the maximum number of states in
S is the same with that of K A G. We have summarised
this issue in Theorem 2.

Theorem 2: If the supervisor S’ satisfies the
following conditions, then S’ is an optimal (or
minimally restrictive) proper supervisor with respect
to the plant G.

(1) The supervisor S’ is controllable with respect to
the plant G.

(2) L,(S) =L(S)

(3) L,(G) AN Ly,(S") = L(G) ANL(S)

(4) If S is the supremal controllable sub-language
with respect to K, then L(S'/G) = L(S) has to
be satisfied.

Proof: The first condition means that the designed
supervisor has to satisfy the controllability with respect
to the plant, and the second condition represents that
the supervisor has to be non-blocking. The non-
conflictness of the supervisor with the plant is
represented in Condition (3). In other words, the third
condition means that the supervisor has to be non-

blocking with respect to the plant. Therefore, if S’
satisfies Conditions (1), (2) and (3), then S’ is a proper
supervisor. Condition (4) represents the behaviour of
the plant under the supervision of S, which has to
generate the maximally controllable sub-language.
Finally, S’ becomes the optimal supervisor.

The modular supervisor is defined in Definition 4
based on Theorems | and 2.

Definition 4: For the legal languages K, j = 1,2,.. .,
n, let us design the supervisors S;, i = 1, 2, ..., m which
satisfy Theorems 1 and 2. And if §; satisfies the non-
conflictness condition S = S; A S, A ... A S,,, then S;is
defined as the modular supervisor.

Finally, the solution of the modular SCP is
presented in Theorem 3 using Theorems 1 and 2. The
computational complexity of the algorithm for the
controllability, the non-blocking, the non-conflictness
tests, which is presented in Theorem 3, is same when
compared with the one proposed by Ramadge and
Wonham (1987, 1989).

Theorem 3: For a given plant G and legal languages
K;, i=1,2,...,m, modular supervisors S; or S;/ are the
solutions of the SCP using the following procedure.

Modular SCP solution procedure:

Step 0: Define the automaton G of the plant to be
controlled and the automation K; of the Ilegal
languages.

Step 1: Design the sub-plants G,y ;.

Step 2: Check the controllability of K; with respect
to Gy, using the controllable events in K;. If K; is
controllable, go to Step 5, otherwise go to next step.

Step 3: Reconstruct K; by considering the events
that do not satisfy the controllability in the control-
lable events in K.

Step 4: Go to Step 2. If K; cannot be reconstructed
while satisfying the controllability, then go to Step 7.

Step 5: Check the non-blockingness of K, Delete
the state that makes K; as blocking, and then go to
Step 2.

Step 6: Check the non-conflictness of K; with
respect to Gy, If K; is non-conflicting, then
S’'; = K,. Otherwise, reconstruct K; by checking the
string, which makes K; as conflicting, and then go to
Step 2.

Step 7: Find the supremal controllable sub-lan-
guage S; of K; with respect to Gy,;;. S; is the solution of
the modular SCP with respect to (K;, Gyp.,)-

Step 8 If L(S) = L(S';/Ggp), then §; is
the solution of the modular SCP with respect to (K,
Gsub,i)'

Proof: The proof is omitted because it is straight-
forward from the proofs of Theorems 1 and 2.
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3.2.  Design of high-level supervisor

Let us represent the plant G as the low-level
plant Gy, = {Q, Zio, 10, G0, 0, Q0. m} and define the
high-level plant G,; which satisfies L(G},;) = O{L(G,)}
with the information map ®. The information map is
defined as ®: L(G,,)— T, where T = {10, 71, T3, ...} i8
the set of events which have the physical meaning in the
high-level plant among the low-level events. The
information map is an arbitrary projection map. The
high-level plant G, is also represented as the automa-
tion Gu = {OQni> Zpi» Oni qnios Qnim} similar to Gy,
Therefore, the high-level supervisor can be designed if
we solve the SCP with respect to the high-level plant G,;
and the high-level legal language Kj,;.

The information map @ is defined by mapping the
high-level event t as the state output of the states of
G),. The state in Gy,, which has the state output about
O, is defined as the vocal state. And then Gj; can be
constructed from ® and Gy,. Before constructing Gy,
Gy, has to be reconstructed using the following two
conditions to make Gj; maintain the control structure
of G/O.

Condition 1 for the high-level plant: Output
Control Consistency (OCC)

O LG} = L(Gy) (10)

Condition 2 for the high-level plant: Strictly OCC
(SOCQ)

00 {L(G)}'] = L(Gy) (11)

Condition 1 means that in a certain low-level
state, when there is a state transition by the low-level
event which has the state output, and also, there is a
state transition by the low-level event which, how-
ever, has no state output, this low-level state has to
be divided with respect to two different state
transitions. And Condition 2 represents that the
state outputs have to be redefined according to
whether the low-level event, which makes the
state transition with respect to the reconstructed
low-level states by Condition 1, is controllable or
not. Both Conditions are defined as the hierarchical
consistency.

The design procedure of the high-level supervisor is
presented in Theorem 4 using Theorem 3 and OCC
and SOCC conditions.

Theorem 4. For a given low-level plant G, an
information map ®, high-level legal languages (Kj;
i=1,2,..., m and high-level supervisors (Sy;; or
S'si)) are solutions of the SCP using the following
procedure.

High-level SCP solution procedure

Step 0: Define the automaton Gy, of the low-level
plant to be controlled and the automation Kj;; of the
high-level legal languages. And also define the in-
formation map ©.

Step 1: Design the sub-plants (Gy,)sup.i-

Step 2: Construct (G/(,);;'Zf’/ of (Go)sup.; using ©.

Step 3: Construct {(G,) %"} e of (G;o);;’,‘,”ll using
Equation (10). '

Step 4: Construct {(Glo)zzz,c;l}socc of {(Glo)if;;?}occ
using Equation (11).

Step 5: Construct Gy = @L{(Glo):fj;i[}soa, , and
define G, as the high-level plant.

Step 6: Run from Steps 2-8 of Theorem 3 with
respect to (Kj,.;, Gp).

Proof: The proof is omitted because it is straight-
forward from the OCC and SOCC conditions and the
proofs of Theorems 1 and 2.

Finally, the architecture of decentralised super-
visory control is illustrated in Figure 2.

4. Application: miniature CIM system
4.1. Layout

In this article, an experimental miniature CIM system
is experimented to verify the proposed decentralised
supervisory control. The miniature CIM system con-
sists of two NC machines, three industrial robots, two
AGYVs, several conveyor belts, detection sensors, etc.
This system is designed to have two types of
production lines, the cumulative and the non-cumula-
tive way, under the assumption of the manufacturing
of two products. The layout of the miniature CIM
system is shown in Figure 3.

4.2. Plant model

The automaton of the plant G can be designed by
the synchronous product (Wonham 1998) of all the

High-level * High-level [—> High-level
Supervisor 1 Plant Supervisor 2
Shi1 === Gy «--- Ship

7y ; 7'y 7y

1 1 1

1 I 1

1 I 1
v h v ! v

Modular > Low-level |[* Modular
Supervisor 1 Plant Supervisor 2
S <--- Gio = S

Figure 2. Structure of decentralised supervisory control
system.
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Section6 ble
S17

NC Machine2

Solen0|d
Robot2
X S S4

Section5 »le

Section4
AGV1 S16

NC Machine1

Robot1
Conveyor Belt1

[ Convs I Conv4 |[ Conv3 |[ Conv2 ﬂ]

»-S8 #:-S7 #-S6 #-S5

Robot3
#-S11 #-S10 #:S9

-S4 #%:S2 ,qSensor1

I Conv6 l

AGV2 Restraint Pin

S$13 S14
Section1 »l < Section2 _ Section3
Figure 3. Experimental miniature computer-integrated manufacturing system.
mv_AGV/

automata of each component, after modelling
the components of the plant such as the NC machine,
the industrial robot, etc. as automata. In this article,
the number of states and events is minimised in the
component model. This minimisation is done by the
projection of the events, which are unnecessary to
observe and unobservable by a supervisor and do not
affect the behaviour of a legal language towards the
null event ¢. For example, a velocity change of AGV is
not modelled in the automaton of AGV because the
velocity is controlled not by the supervisor but by a
local controller of the AGV. The designed automata
are projected to generate same language regardless of
the states because this article applies the supervisory
control theory as the event-based approach. The
number of states can also be minimised by this state
projection. However, if the designed automata are
changed to the non-deterministic ones after the state
projection, the automata are transformed into the
deterministic ones using the subset construction (Giua
and Seatzu 2001).

Every component in the miniature CIM system
(two AGYVs, three robots, two NC machines, five
conveyor belts, seventeen detection sensors, restraint
pin and solenoid) is modelled as an automaton with
two states. The designed plant models are shown in
Figures 4-10. Every event defined in the miniature

umv_AGV/ i=1,2

Figure 4. Automation model of AGVs, AGV .

CIM system is listed in Table 1. The automaton of
the plant G is constructed by Equation (12) using
the designed automata of all components. This
article used the open software for the supervisory
control theory, TCT (Wonham 1998), for the
design and calculation of the automata. The state
number of G is 4, 294, 967, 296, which is constructed
using SYNC function of TCT as shown in Equation
(12).

G =SYNC(AGV;, ROBOT;, NCMachiney,

12
ConvBelt,,, SENSOR,, ResPin, Sol) (12)

4.3. Modular supervisor

In this section, the modular supervisors are presented
for the decentralised supervisory control of the
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opl

op2
(@)

op3

op4
(b)

op5, op6

end_op5, end_op6
©

Figure 5.  Automation model of robots, ROBOT:;. (a) Robot
1, (b) Robot 2 and (c) Robot 3.

op/

end_op/ i=1,2

Figure 6. Automation model of NC machines,
NCMachine;.

mv_Conv/

umv_Conv/  /=1,.,5

Figure 7. Automation model of conveyor belts, ConvBelt,.

WP_at/

noWp_at/ nowP_ati =
(a)

AGV/ atk

~N

g d T

NOAGV_atk e
noAGV_atk k=12,..,17

(b)

Figure 8. Automation model of sensors, SENSOR, (a)
sensor for conveyor belt and (b) sensor for AGV.

pin_down

pin_up
Figure 9. Automation model of restraint pin, ResPin.

mv_Sol

umv_Sol

Figure 10. Automation model of solenoid, Sol.

experimental miniature CIM system using Theorem 3.
The specifications for the modular supervisors are as
follows:

(1) Buffer size of the conveyor belts 2, 4 and 6 are
two work-pieces.

(2) The robot 1 picks up the work-piece from the
conveyor belt 1 and moves it into the NC
machine 1. After the completion of machining
in the NC machine 1, the robot 1 picks up the
work-piece and moves it onto the conveyor belt 2.

(3) The robot 2 picks up the work-piece from the
conveyor belt 3 and moves it into the NC
machine 2. After the completion of machining
in the NC machine 2, the robot 2 picks up the
work-piece and moves it onto the conveyor
belt. 4

(4) The robot 3 picks up the work-pieces from the
conveyor belts 5 and 6 and moves those into the
AGV-1 and AGV-2 separately.

(5) The solenoid separates the work-pieces onto
the conveyor belts 4 and 6.

(6) Two AGVs unload two types of work-pieces to
the specific places separately; AGV-1 and
AGV-2 unload work-pieces 1 and 2 at S16
and S14, respectively.

(7) AGVs travel only in counterclockwise direction
and have to avoid the collision.

The modular supervisors are designed which satisfy
the non-blockingness and the non-conflictness with
respect to the specifications. The number of designed
supervisors are eight for the specifications 1) ~ 5) and
six for the specifications 6) and 7).

4.3.1. Modular supervisors for production line

Firstly, the legal languages are designed for the
specifications 1) ~5). The eight modular supervisors
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are designed with respect to the designed legal
languages using Theorem 3. These supervisors are
shown in Figures 11-13.

Table 1. Event list.

Plant Event Controllability
AGVs mv_AGV; Controllable
umv_AGV; Uncontrollable
Robots opl Controllable
op2 Controllable
op3 Controllable
op4 Controllable
opS Controllable
op6 Controllable
end_op5 Uncontrollable
end_op6 Uncontrollable
NC machines opi Controllable
end_opi Uncontrollable
Conveyor belts mv_Convi Controllable
umv_Convi Uncontrollable
Sensors WP_ati Uncontrollable
noWP_ati Uncontrollable
AGVi_atk Uncontrollable
noAGVi_atk Uncontrollable
Restraint pin pin_down Controllable
pin_up Controllable
Solenoid mv_Sol Controllable
umv_Sol Uncontrollable
mv_Conv1l mv_Convl

WP_at3 WP_at3
(@)

mv_Conv3 mv_Conv3

WP_at7 WP_at7
(b)

pin_down

(T WP_ato

WP_at10 WP_at10
©)

Figure 11. Buffer size supervisor. (a) buffer size supervisor
for conveyor belt 2, (b) buffer size supervisor for conveyor
belt 4, and (c) buffer size supervisor for conveyor belt 6.

Let us explain how the supervisor controls the
plant using the example of the buffer size supervisor
for the conveyor belt 2 as shown in Figure 11(a). The
control data of this supervisor are enabling all events
at the initial state and the state 1 and disabling the
event mv_Convl at the state 2. This means that the
buffer size supervisor for the conveyor belt 2 will not

mv_Conv2 opl op2
WP_at2 nd_op1
WP_at2
(a)
mv_Conv4 op3 op4
WP_at6 d_op2
WP_at6
(b)
op6 op5

WP_at11

end_opb6 end_op5
(©
WP_at8
mv_Conv5 op5
(d)

Figure 12. Routing supervisor. (a) routing supervisor for
robot 1 and NC machine 1, (b) routing supervisor for robot 2
and NC machine 2, (c) routing supervisor for robot 3 and
production lines 1 and 2 and (d) routing supervisor for robot
3 and conveyor belt 5.

WP_at4

noWP_at4 umv_Sol mv_Sol

Figure 13. Workpiece selection supervisor.
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permit the occurrence of the event mv_Convl after the
occurrence of the string &-mv_Convl -¢- WP_atl -¢-
myv_Convl -¢- WP_atl -¢.

4.3.2. Modular supervisors for AGV

The seven modular supervisors for the supervisory
control of AGVs are designed with respect to the
specifications 6) and 7) using Theorem 3. The modular
supervisor for the specification 6) is shown in Figure
14. The legal languages for the specification 7) are
designed as six legal languages by dividing the AGV
lane into six sections as shown in Figure 3 and then six
supervisors are designed with respect to each legal
language. The AGVs always travel under the super-
vision of these seven modular supervisors.

The AGYV collision avoidance supervisor for the
section 1 is shown in Figure 15. For other sections, the
collision avoidance supervisors can be easily designed
by changing only transition events according to the
sensor signals of each section. The AGV collision
avoidance supervisor for the section 1 has the control
data which disables the event mv_AGV2 and mv_AGV1
at the state 2 and 4, respectively. This means that the
event mv_AGV2 and mv_AGV1 will be disabled after
the occurrence of the string ¢-(mv_AGV1 + mv_AG
V2)-e- AGV1_atl2-¢-(mv_AGV1 + mv_AGV?2)-¢-AG
V2 atl7-mv AGV1-¢ and the string &-(mv_AGV1 +
mv_AGV2)-e- AGV2_at12-¢- (mv_AGV1 + mv_AGV2)-¢-
AGV1 _atl7-e-mv_AGV1 - e, respectively.

mv_AGV2 mv_AGV1, mv_AGV2 mv_AGV1

AGV1_at16 @ AGV2_at14

end_unloadl

end_unload2

Figure 14. AGYV unloading supervisor.

mv_AGV1 mv_AGV1
mv_AGV2 mv_AGV2 mv_AGV1

Q AGV1_at12 @ AGV2_at17

1 AGV1_at13 AGV1_at13

mv_AGV1, mv_AGV2 mv_AGV2

AGV2_at12 Q AGV1_at17

1
AGV2_at13 \I/ AGV2_at13

Figure 15. AGV collision avoidance supervisor for
section 1.

4.4. High-level supervisor

The high-level specification of the miniature CIM
system is shown in the following.
High-level specification.

(1) The total buffer size of the conveyor belts 2 ~ 4
is three work pieces.

The designed high-level supervisor for the high-
level specification is shown in Figure 16. All high-level
events which are not illustrated in Figure 16, form the
self-loop events at all states.

The design procedure of the high-level supervisor,
as shown in Figure 16, is specifically represented using
Theorem 4 in the following. All automaton con-
structed during the design procedure are represented
as the number of the states and the transitions because
the states are too many to illustrate.

Design procedure for the high-level supervisor:

Step 0: The low-level plant G,, is constructed as
SENSOR; x SENSOR, x SENSOR; x SENSOR, X
SENSORs x SENSORs x SENSOR; x ConvBelt; x
ConvBelt, x ConvBelt; x ConvBelt,. The number of
states and transitions in G, are 1,024 and 13,312
respectively. The high-level legal language Kgm is
defined as the automation shown in Figure 16 except
the self-loop at every states. The designed K9, has 4
states and 9 transitions. Finally, the information map
O is defined in Table 2. The controllability of the high-
level events is same with the low-level event defined in
Table 1.

Step 1: (Gi)sup.1 1s designed as the synchronous
product of the buffer size supervisor for the conveyor
belt 2 and the buffer size supervisor for the conveyor
belt 4 which are shown in Figure 11(a) and (b)
respectively. The designed (Gy,)qp,1 has 9 states and
102 transitions.

Step 2: (G/a)lfz(’fﬁ[ is constructed from (Gj,)gp.1- The
designed (Gy,),,, 1 has 27 states and 309 transitions.
The part of this construction is illustrated in Figure 17.
The event WP_atl makes the transition from the state
0 to the state 11 and the state output becomes 7, in
(Go)!%“ as shown in Figure 17(b). And the state 0
becomes the state 9 and 10 after the occurrence of the
events WP_at7 and mv_convl, respectively and the

mv_Conv1l mv_Conv1l mv_Conv1

WP_at1 @ WP_at1 @ WP_at1

WP_at7 WP_at7 WP_at7

Figure 16. High-level supervisor.
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Table 2. Information map @.

Low-level event 7= 0(0) High-level event
WP_atl T WP_atl
noWpP_atl To null
WP_ar2 To null
noWp~_at2 70 null
WP_at3 To null
noWprP_at3 To null
WP_at5 To null
noWpP_at5 T null
WP_at6 70 null
noWpP_at6 To null
WP_at o WP_at7
noWprP_at7 To null
mv_Convl T3 mv_Convl
umv_Convl To null
mv_Conv2 T null
umv_Conv2 To null
mv_Conv3 T null
umv_Conv3 70 null
mv_Conv4 T null
umv_Conv4 70 null

noWP_atl, WP_at3, noWP_at3

noWP_at5, WP_at7, noWP_at7
mvConvl, umv_Convl
mv_Conv3, umv_Conv3

(@)

noWP_atl, WP_at3, noWP_at3
noWP_at5, noWP_at7
umv_Conv1l, mv_Conv3, umv_Conv3

70

()

Figure 17. (a) Part of (Gjp)sun.1 (b) (Gio)
shown in Figure 17(a).

vocal
sub,1 for (Glo)sub. 1

state output becomes 7, and t3 at the state 9 and 10,
respectively. The state output at other states is 7.

Step 3: {(G1)!%} occ is constructed from (Gy,)!%
{(G1o)! %"} o has 48 states and 548 transitions. This
procedufe is explained using Figure 18 as follows. The
state output of the case, when the event WP_at7 has
occurred without the occurrence of the event
mv_Conv3 at the state 0, has to be defined differently
with the case when the event WP_at7 has occurred
after the occurrence of the event mv_Conv3 at the state
0. Because mv_Conv3 is the controllable event, the
former case cannot disable the occurrence of WP_at7
while the latter case can disable WP_at7 by disabling
mv_Conv3. Therefore, in the latter case, the state
output has to be defined as the controllable event. The
information map, which has to be added into the
information map ® defined in Table 2, is defined in
Table 3 to solve this problem. In {(Gy,)!%“} - shown
in Figure 18(b), which is redesigned using the
additional information map, the state 0 goes to
the state 9 and the state output becomes 1, after the
occurrence of WP_at7. And the next state becomes the
state 27 after the occurrence of mv_Conv3 and if
WP_at7 has occurred again, the state output becomes
75 but not 7,.

Step 4: The designed {(Gio) iy} socc has 39 states
and 499 transitions. Because the new events 74 and 75
which are defined in Table 3 are not eligible in the
plant, those events have to be redefined as 7, in this
step, which are eligible high-level events. This means

mv_Conv3

mv_Conv7

mv_Conv3

WP_at5

mv_Conv3
T

2 s
WP_atl fg\ mv_Conv3

WP_at7
=2 36

mv_Conv3

WP_at7

(b)

Figure 18. (a) Part of (G;(,);l‘,’;"ll (b) {(G/,,)ES,‘)“I[ oce for
(G1o)!%% shown in Figure 18(a).
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that the information map makes the state output as 7,
if WP_at7 has occurred regardless of the previous
string and new state outputs, i.c. new high-level events,
have to be defined for the low-level event occurred
after WP_at7. Let us make the partition for the low-
level events as (13) before defining the new information
map O.

2y ={WPatl,WPatl,mv.Convl}
{(Z 1051} =4 22 ={mv.Conv3}
23 = (Zlo)sub,l _Zl - Z‘2

(13)

The physical meaning of the partition IT{(Z;,)smp.1} is
as follows. The high-level events, which are defined in
Table 2, are partitioned into ;. The controllable events
and the uncontrollable events in the other low-level
events are partitioned into X, and X3, respectively. The
final information map @ is defined in Table 4 according
to this partition. New high-level events 14 ~ 717 only
represent whether the controllable event, which occurred
in the low-level plant, has transferred into the high-level
plant. And those events are partitioned according to the
state of {(G,)!%“} occ after the occurrence of the low-
level string. The state output is 7, if WP_at7 has
occurred at every state as shown in Figure 19 and it
becomes 17 if mv_Conv3 has occurred.

Step 5: The designed high-level plant
G = O[{(G1) %N ool has 14 states and 78
transitions. ’

Step 6-0: The control data of Kgil with respect to
G,; disables the uncontrollable event 7,.; € T,.1
which is not defined at each state. This means that
Kj)., does not satisfy the controllability because it
disables 7, and 1, at the state 0 and 3, respectively.
Therefore, let us redesign the high-level legal language

Table 3. Additional information map to satisfy the condi-
tion for OCC.

Low-level sequence T = 0O(0) High-level event

mv_Conv3 WP_atl T4
myv_Conv3 WP_at7 Ts

Controllable WP_atl
Controllable WP_at7

Table 4. Additional information map to satisfy the condi-
tion for SOCC.

Low-level

sequence T = 0O(0) High-level event

0102 T7, T9, T11> T13> T15, T17 Controllable event
occur in Gy

010203 Tes T8> T10- T125 T14> Tl6 Uncontrollable event

occur in Gy

as K}, by adding the self-loop of these events at all
states.

Step 6-1: The control data of K},i~1 satisfies the
controllability because it disables the controllable
event 73 at the state 3.

Step 7: K}, is non-blocking as shown in Figure 19.

Step 8: K}”.:l is non-conflicting with G,; because K}, |
satisfies L, (Gpi) A Ln(K},; ) = L(Gw) A L(K},; ) there-
fore, the high-level supervisor is designed as
Shi1 = Kii1- Gui A Kj;; has 52 states and 287 transi-
tions and ;,;; has 4 states and 59 transitions.

Step 9: The automaton of the supremal control-
lable sub-language of K} , has 52 states and 287
transitions with respect to Chi. This automaton is the
solution of the SCP, S, ;.

Step 10: Finally, '), is the solution of the SCP
with respect to (K}, ,Gy) which has less states and
transitions than S, because it satisfies L(S';.; x Gy;)
= L(Shi,l)~

The designed high-level supervisor S';;; makes the
state transition only for the high-level events t; and 7.
And it disables mv_Convl at the states 3 while it
enables mv_Convl at the states 0, 1, and 2. Therefore,
only high-level events defined in Table 2 have meaning.

5. Implementation
5.1. CMSSM transform

In this article, the designed modular supervisors are
transformed into the CMSSM for implementation
purposes. The CMSSM is a machine which has specific
outputs for the current state, the input, and the clock
(Wakerley 1990). The supervisor, which is transformed
into the CMSSM, can be implemented as the PLC or
the digital circuit (Brandin 1994). The CMSSM of the
AGYV collision avoidance supervisor for section 1 is
shown in Figure 20. In Figure 20, DO ~ D2 represents
the state of the CMSSM and mv_AGV1 and mv_AGV?2
are the outputs of each state. And the state output is
operated as the edge trigger for the current input.

mv_Conv3

TO T >

G\ mv_Conv3

mv_Conv3

Figure 19. {(Gzo)ii’/i"f socc for {(Gln);gglfl[}occ shown in
figure 18.
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D2 D1 DO D2 D1 DO D2 D1 DO
- 0 0 O AGV2_atl12 0 0 1 AGV1_atl7 0 1 0
mv_AGV1 1 mv_AGV1 1 mv_AGV1 0
mv_AGV2 1 mv_AGV2 1 mv_AGV2 1

AGV1_atl3

AGV1_at13

D2 D1 DO D2 D1 DO
AGV2_at12 0 1 1 AGV1_atl7 1 0 0

mv_AGV1 1 mv_AGV1 1

mv_AGV2 1 mv_AGV2 0
AGV2_at13 | AGV2_at13

Figure 20. CMSSM of AGV collision avoidance supervisor for section 1.

CMSSM clock | ]

event WP_atl
occurrence

Figure 21. Event occurrence signal.

There is an issue which has to be considered when
the supervisor is transformed into the CMSSM. The
event can be recognised into more than one event if the
event occurrence time is longer than the CMSSM
clock. An example of this problem is as follows. If
WP_at] has occurred at the initial state then the state
will be state 1 and it will go to the state 2 after the
additional occurrence of WP_atl in the buffer size
supervisor for the conveyor belt 2 shown in Figure
11(a). However, if the event occurrence time of
WP_atl is longer than one clock of the CMSSM as
shown in Figure 21, the CMSSM will recognise this
event as several occurrences of WP_atl. As a result,
the initial state will go to state 2 even only one WP_atl
has occurred. Therefore, the event which can make
state transition continuously has to be differentiated
when the supervisor is transformed into the CMSSM.
In the case of this example, the CMSSM has to be
designed by differencing WP _atl occurring at the
initial state with WP _atl occurring at the state 1. In
the CMSSM of the buffer size supervisor, the latter
case of WP_atl is redefined as WP_atl as shown in
Figure 22. Also, this means that the additional sensor
for the new event WP _atl is neceded for the
implementation.

The logic is designed for the inputs and the outputs
of the CMSSM (Wakerley 1990). In the case of the
CMSSM shown in Figure 22, the sensor signals
WP_atl, WP_atl’, WP_at3, and WP _at3 are the
inputs and the control signal for the conveyor belt 1
mv_Convl is the output. Finally, the logic for the

CMSSM of the buffer size supervisor in the conveyor
belt 2 is shown in (14), (15), (16), (17), and (18).

D2y = (D1 A DO AGV1_atlTA ~ AGV2_at13)
V (D2A ~ AGV2_at13)

(14)

Dl,ey = (~ DI ADOANAGV2_atlTA ~ AGV1_at13)
V (DIA ~ DOA ~ AGV1_at13)
A (~ D2A ~ DIN ~ DO N AGV2_at12)
V (DI A DOA ~ AGV1_atlTA ~ AGV2_at13)

(15)

D0,y = {(~ D2A ~ D1A ~ DO)
A (AGV1_atl4V ~ AGV2_ar12)}
-V (~ DI ADOA ~ AGV2.atlT  (16)
A ~ AGV1_at13) V (D1 A DOA
~ AGV1_atlTA ~ AGV2_at13)

mv_AGV1 =~ D2 (17)

mv_AGV2 =~ D1V DO (18)

5.2. Simulation

The designed CMSSMs are verified using the circuit
design and analysis software PSpice. In simulation, the
outputs are tested with the arbitrary input to the
CMSSM. All designed supervisors are simulated and
the simulation result of the AGV collision avoidance
supervisor for the section 1 is shown in Figure 23.

In  Figure 23, AGV1_atl2, AGV2_atl2,
AGV1_at13, AGV2_at13, AGV1_atl7, and AGV2_atl7
are the sensor signals which are used as the input and
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Al A0 Al A0 ’ Al A0
WP_atl WP_atl
— 0o o0 = 0 1 =2 1 0
mv_Convl 1 mv_Convl 1 mv_Convl 0
WP_at3’ WP_at3

Figure 22. CMSSM of buffer size supervisor for conveyor belt 2.

& MicraSim Probe - [Collis1,dat]

Edit Trace Pl

AGU1at12 1 _
AGU2at12 1
AGU1at13 1
AGU2at13 . | F R
AGU1at17 | T 1 i
AGU2at17 < 1
Do a— o |
D1 1 I —
D2 1
AGU1 I
AGU2 LT
8s 2.8ms 4. 0ms 6.06ms
Time

For Help, press

Figure 23. Simulation result for AGV collision avoidance
supervisor for section 1.

Supervisor 1
—¥ Logic ¥ Flip-Flop 1
T
—DI Supervisor 2 |—>
Detection N AGV
Sensors »H[ Supervisor 3 |"» Motor Drivers
—il Supervisor 4 |—>
—Dl Supervisor 5 |—t
—Dl Supervisor 6 I—b

Figure 24. Block diagram of AGV collision avoidance
system.

the output signals are AGV'1 and AGV?2 which are the
control signals of the AGVs. And D0, D1, and D2 are
the states of the CMSSM. Let us analyse the
simulation result shown in Figure 23. In the beginning,
all states are 0. The state does not change even after the
occurrence of AGV1 _atl7 because AGV1 _atl7 is the
self-loop event at the initial state. And then DO
becomes 1 due to the occurrence of AGV1_arl2. At
the same time, if AGV2 atl7 has occurred, D1
becomes 1 while DO becomes 0. Therefore, the state
of the CMSSM becomes 2 and AGV2 is disabled. If

Figure 25. Experimental AGV collision avoidance system.

AGV1_at13 has occurred, the state goes back to 0 and
AGV2 will be enabled again. This means that if a
certain AGV enters the section 1 and also if the other
AGYV enters the section 1 before the previous AGV
leaves the section, the supervisor will disable the latter
AGYV until the previous supervisor leaves the section 1.
We can see the same control action when the AGV2
enters the section 1 at first, i.e. when AGV2_at12 has
occurred at the state 0 in Figure 23.

5.3. Implementation

The AGV collision avoidance supervisors for all
sections are implemented and experimented as shown
in Figure 24. These supervisors control the AGVs as
follows. The sensors located in the AGV lane will
detect the AGV 1 and 2 and then these signals will be
transmitted to the collision avoidance supervisors.
Each supervisor will output the control signal to the
motor driver of the AGVs using the embedded logical
circuits with the transmitted sensor signal. The
implemented AGV collision avoidance system is shown
in Figure 25. The implanted collision avoidance
supervisors are operated in an exactly similar manner
as that of the simulation result.

6. Conclusion

In this article, the decentralised supervisory control
scheme is presented for large complex systems which
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are modelled as DESs. The proposed decentralised
control scheme is divided into the modular supervisory
control and the high-level supervisory control. The
generalised solution for the modular SCP is presented
with the concept of the sub-plant to reduce the
computational complexity and it is also proved
theoretically. The modular supervisors, designed using
the proposed solution, are the maximum permissible
and controllable sub-language of the given legal
languages with respect to the plant to be controlled.
For the high-level SCP, the generalised solution is also
presented and then proved, which guarantees the
hierarchical consistency. The high-level supervisors
are also the maximum permissible and controllable
sub-language of the given high-level legal languages
with respect to the high-level plant designed using the
proposed Theorem.

The proposed decentralised control scheme is applied
for the control of the experimental miniature CIM
system. The miniature CIM system is modelled as 31
automata. The first eight and next six modular super-
visors are designed using the proposed modular SCP
solution procedure with respect to the legal languages
for the production line and the AGV control respec-
tively. In addition, one high-level supervisor, which has
52 states and 287 transitions, is designed using the high-
level SCP solution procedure proposed in Theorem 4 to
control the buffer size of all conveyor belts.

The designed decentralised supervisors are trans-
formed into the CMSSM in order to apply and verify
the proposed control scheme for real-world problems.
The control logic is designed based on the transformed
CMSSM and this logic is implemented and embedded
in the digital circuits. Finally, the AGV collision
avoidance system is constructed to verify the perfor-
mance of the proposed control scheme. The imple-
mented supervisors accurately perform their functions
which satisfy the control specifications.
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